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SYNTHESIS OF THE OPTIMAL CONTROL FOR A 
LINEAR SYSTEM WITH TWO PHASE CONSTRAINTS* 

B.E. FEDUNOV and S.N. KHLEBNIKOV 

The synthesis of a control for a system described by a linear, second- 
order differential equation with constant coefficients (an oscillatory 
section) and when two constraints are imposed on the phase coordinates 
(one of them mixed) is given. The properties of the optimal phase 
trajectories are described. 

1. Formulation of the problem. The following problem arises when constructing the 
servos for measuring systems. The measuring system intended for tracking an external object 
is initially given the angular elevation of the object. On receiving the signal, the servo 
of the system turns its sighting beam in the prescribed direciton. The fastest possible rate 
of sweep of the sighting beam must be ensured, taking into account the restriction imposed on 
its rate of motion and on the maximum power demand allowed. 

Using this formulation, we will separate the problem of synthesizing the optimal response 
control ILo transforming the system 

dyldt = -2ElTy - cplTz + ii2/T2, dqldt = y (1.1) 

T>O, O<E<l 

from the arbitrary admissible points cp,y to the origin of coordinates, with the following 
constraints imposed on the control ~7 and phase coordinates: 

I U I < G, I Y I < 2P07 I ydy / dt I Q 4fi0 (1.2) 

(the second condition describes the velocity constraint and the third the power constraint). 
Next we consider the case when E e (Cl,,519 i JE/2) (see Sect.5). 

We know /l/ that the form of the optimal trajectories sought depends , undertheconstrainta 
given in (1.21, mainly on the form of the roots of the characteristic equation (1.11 

hl, 2 = x * pi, x = -_UT < 0, p = (1 - ~z)‘J*/T 

Transforming the variables 

% 
E 

v2w-1 ( ++ P’ A=-) (1.3) 

we reduce system (1.2) and the constraints (1.2) to a form suitable for our investigation 

dzldt = xz + pi3 + pu, dhldt = -pz + x6 + xu (1.4) 

I u I < 4lI UO = A&, (1.5) 

iz I Q Yuv y, = go12 (1.6) 

l Prikl.Matem.Mekhan.,48,4,584-592,1984 



z (x2 - p6 i pu) < P, Il.2 

--P, < z (x2 T y6 + pu), P, = P,;4 (1.5) 

The main difference between problem (1.4)-(1.8) and that studied in /2,/, 1s the presence 

of the mixed phase constraints (1.71, (1.8) and the description of system (1.4) in terms of 

the oscillatory section. 

2. Conditions of optimality of the control u3 [I, 3, 41. There is a constant 

aJ>o, and functions $1, +g, $t, dp.,*ldt, defidt satisfying the conditions 

(the plus (minus) sign corresponds to the case when z = y,(z = -yO), and relations (1.7), (1.8)’ 
and the conjugate system of differential equations (tl is the instant of termination of the 

control) 

-&-((_cl)$- (2.1) 

The optimal control u"(t) ensures that at every instant t 

max [IPI (xz + ~6 + W + 92 (- pz + x6 + 41 
4, b. * 

v: b, t = I~:Iz(~z+~~+~~)I--po~oo1 jul<uo> 

(2.2) 

on the optimal phase trajectory 2' (t), 6" (t). 

3. Controlling the system within the phase constraints. Let us consider the 
motion of system (1.4) over the time intervals in which the system does not violate the con- 

straints (1.6), (1.7). Then from Sect.2 it follows that 

dp$ldt E 0, dp&ldt G 0 

and we arrive at the problem studied in /l/. 
From the solution of (2.1) we have 

$1 (t) = Ce+’ sin (pt + a), q2 (t) = Ce-xt cos (pt + a) 

(C, a are arbitrary integration constants). 
The optimal control 

u0 = k&n (MI+ %&) 

retains its sign over the maximum time interval At = nip. 

We note that within the phase constraints we have 

d (WI +%Wdt = -2% (~$1 + %&) + (cl" + %')+z 

(3.1) 

(3.') 

(3.3) 

Let us denote by e*= (a:',@) the stationary points of system (1.4) when u = fUo. We 

have %a$)+&)+&u,)=O 

-&'+xa':)+x(fu,)=O 

lap =o, a;) =-((_cuo) 

and relative to these points we have 

or 

dzldt = xz + p (6 - a$)) 

d (6 - a!j)ldt = -pz + x (6 - a;‘) 

(3.4) 

z = CeXt sin (pt + fi), 6 - a$’ = CeX’ cos (pt + p) 

(C, p are arbitrary integration constants). 

(3.5) 

The segments of the phase trajectories of system (1.4) with kt'lO, passing through the 

origin of coordinates, form the end segments of the optimal phase trajectories of the system 
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along which the system enters the origin of coordinates directly. The optimal control changes 

its sign on the same segments. We will call them the first segments of the switch-over line 
SL. The beginning and end of the first segment of SL lie on the straight line z = 0. 

The second, adjacent segment, etc. of SL are 
constructed according to the rules given in 

/I/. SL with the first segment (1) andsecond 
segment (2) is shown in Fig-l. The circles 
show the values of the optimal control in the 
corresponding regions of the phase space and 
(6,~) is the synthesis of optimal control with- 
in the phase constraints. 

We note that the extremal values Of the 
z coordinate at the branches of the optimal 
trajectories with I.&'= fuo lie on the 
straight lines 

2 = p (6 -@,I% (3.6) 

Fig.1 

Then dp&ldt = 0 and from (1.4) we have 

(the lines u+, a_ in Figs.l--6). 

4. Controlling the system at the 
boundary of the velocity phase con- 
straints. When the system moves along the 
constraint boundary (1.6), it cannot emerge at 
the constraints (1.7), (1.8) (since dzldt = 0). 

which implies that under these conditions (see (2.21, (2.1)) the following relations hold: 

~$1 + xqn ~0, dq,ldt = 0 
dqlldt E 0 = (x” + p*) *‘alp + (~1) dp&/dt 

Since du~*/dt 20, it follows that on reaching 2 = Yo we must have JlsQ 0, and on reach- 
ing z 3 --ye’ -we m&t have *a > 0. 

z 

Fig.2 

Let us consider reaching z = y,(z = -yo). 

Fig.3 

From (1.4) and (4.1) we have 

dhldt = -_(*uo)W + “VP 
During the motion along the boundary the coordinate 6 decreases (increases) monotonic- 

ally. The range of its variation is determined by the constraints imposed on the COntrOl 

-&I Q 1% ktztyo) + PtsliP 4 UC8 

The boundary points of the admissible range of motions of the system within the phase 
constraint z=+yo are denoted in Figs.2, 3 by A*,B*. They represent the points of 
intersection of the straight lines (3.6) with z = fvo. 

Let us consider the conditions under which the points hrz, lying within the phase con- 
straints of the problem (1.4) -_[1.8), from their region reach the boundary. 

This is possible on the segments B+, Br+ and B', Br- when the first segment of SL 
intersects the phase boundary (Fig.Z), and at the points B+,B- when it does not intersect 
it (Fig.3). The departure from the phase boundary into the region Of the points 6, 2, lying 
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within the phase boundaries of the problem (1.4)-(1.8) takes place from the point 3: tne 
boundary &*,B,+ and &-,A,- for the case shown in Fig.2, and from the points .\x+. n+. .I-1 W 
of the boundary for the case shown in Fig.3. 

The region of admissibie initial conditions of the system from rwhich it can be transports: 
to the origin of coordinates without violating condition 11.6) and without taking into account 
constraints (1.7) and (L,8), is shown in Figs.2, 3 without hatching (the remaining notation 
follows that of Fig.1). In general, the boundaries shown in Fig.3 may also contain severai 
segments of SL. 

5. CantraIling the system at the boundary of the pfiase power constraint. 
We see at once that we cannot have simultaneous motion along the boundaries (1.71, (1.8: 

and {1.6), i.e. dpr*!& = 0. 
From the motion along the boundasy (1.7), (1.8) we must have 

u) = &PO. pt - XZJE” - 6 (5.1; 

(the plus (minus) sign refers to the motion along the boundary CL.'?), (1.8)). The phase 
trajectory of the system satisfies the equations 

dz!&=_i, p,:s, d&/dt=_+7cP&r -_=(x' + ,tt')/&i (5.2; 

From t 5.2) we obtain directly (c, is the integration constant1 

6 (2) = xzip - (*I) 9 (p” f W(3pPo) -L C8 15.3) 

In the motion along (1.7) (see (5.2)) the coordinate z (see Fig.41 increases (decreases) 
monotonicaLly in the upper (lower) half-plane z>O (z<O), and thecoordinate 6 decxeases 
fincreases) monotonically. From (5.1) and (5.3) we find that in the upper (lower) half-plane 

dtLs"~U!Za > 0 fd2UojdZ2 < 0) 

and the control attains its minimum (maximum) at the unique stationary point (dt;':dz = 0) of 
the function u" (2) 

ZLI =i[Po(x + (2x2 + p")Q)/(p" f iQ)]'l* (5.4) 
max 

(the pfus and minus signs preceding the square brackets refer to the upper and lower half- 
plane respectively). This extremal value must belong to f--rt,, iu,], therefore the straight 

Fine t = z& (2 = zLB+) can be intersected by the phase trajectories only on the seqment 

Fig.4 shows such limit trajectories of the system (5.2). The dashed line denates the 
trajectory (5.3) which moves completely within (1.7) except for a single point. The set of 
points satisfying the condition 

z (x2 + I*6 + au) = PO, I u i < % 
(regions A,, B, in Fig.4) represents a region in which the system can move, with help of the 
control, along the boundary (1.7). A motion in which condition (1.7) is satisfied Fs impos- 
sible witf?in the region A,-, B,- (Fig,4), sine the phase constraint CL.71 will be violated 
here. The region AZ- is determined by the constraint imposed on the control from below, and 
the region B3- from above. 

When the motion (see (5.2) takes place along fL.81, the coordinate z decreases (increases) 
in the upper (lower) half-plane s > Q (2 < 0) and the coordinate 6 changes the sign of its 
rate of change on 

In the upper 

the straight lines (Fiq,5) 

za = fl--xP,l(p2 -I- xZ)l’/* 

(Iower) half-plane we have 

dWiisz" < 0 f&b%%" > 0) 

and at the unique stationary point &O/d2 = 0) 

(5.5) 

(where the plus and minus signs preceding the square brackets refer to the upper and lower 
haif-plane respectively), the control IJ attains its maximum (minimum). We find that the 
straight Line z = z& (z = z&~) can be intersected by the phase trajectories oniy on the 
segment 
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z 
6+ 6_ 

Fig.4 Fig.5 

By analogy with the previous exercises, Fig.5 shows that A,,& regions in which the 
system can move, under the control (5.1), along the boundary (1.8) of the phase constraint, 

A,-, B; are the regions in which the constraint is violated, with A,- defined by the con- 
straints imposed on the control from above, and &- by hose from below. 

In the subregion of A, and B, (Figs.4, 5 ) hatched with oblique lines, the system, having 
emerged at the boundary (1.8) , moves under the control (5.1) along the boundary without cross- 
ing it, and leaves the constraint after some time has elapsed. Under the constraints imposed 
on j the system does not leave the hatched region. 

Direct comparison of dbldz on the trajectories passing along the boundaries of phase 
constraints (1.7), (1.8) and on the trajectories emerging at the boundaries from the region 
bounded by the phase constraints, shows that at the instant of arrival and departure the 
trajectories touch each other. A kink is observed when the trajectories pass from (1.7) to 
(1.8). 

We note that points with d6idz = 0 on the optimal trajectories within thephaseconstraints 
lie on the straight lines 

--p" + x (6 - 1LJ - 0, 2 >o 

-/Jz + x(S + ue) = 0, z<o 

which intersect the boundary (1.8) at the points with coordinate 

6. Synthesis of optimal control. Investigation of the properties of the optimal 
control carried out in Sect.3--5,enables us to construct the synthesis of the optimal control, 
i.e. to obtain the dependence of nOon the running values of the phase coordinates z, 6 of 
the system. 

Indeed, if at any instant t the phase point is found within the boundaries of the phase 
constraint 1 z I< y. and c,:,,r = {I u 1 <IL,), the quantity rr" - fuo and the optimal motion 
are governed for such t by the laws established in Sect.3. When the phase point emerges at 
some instant t at the boundary (1.6) or (1.7), (1.81, then the optimal motion must be subject 
to the laws established in Sect.4 or 5 respectively. The optimal instant of departure of the 
phase point from these boundaries (and the phase point cannot be found simultaneously at the 
boundaries (1.6) and (1.7), (1.8)), is determined uniquely by the fact that, after the system 
has departed from the boundaries (1.6) and (1.7), (l-8), the optimal control takes only the 
limit values fu, and does not change its sign before reaching the origin of coordinates. 

We note that two, essentially different forms of the system exist: SL intersects the 
boundary (1.8) (see Fig.61, and SL does not intersect the boundary (1.8). 

Let us construct the control for systems of the first type, as the most complex ones, and 
let the mutual distribution of the contraints be such that it is possible to reach the bound- 
ary (1.6) and on (1.7), (1.8) (see Fig.6). 

Let the initial-position of the phase point be strictly within the constraints, i.e. 
lz 1 Q y,, V& - (11~1 <IL,} (let us say, to be specific, that it lies on the 8 a$;_"2Gw%:tin 
the first segment of SL). Since the pattern of the phase plane and the points 
symmetrical about zero, Fig.6 shows only the trajectories of motion of the system for the 



points 1* - 4+. 
When the system moves from the initial 

aries (1.6)-(1.8) (this case was studied in 
ciple of choosing the sign is clearly shown 
it to arrive at the origin of coordinates. 

points of type I*, it &es not reach tne bJur,ci- 
Sect.3) I Moving under the control ~fs"~ (the prin- 
in Fig.61, the system reaches SL and moves alonq 

When iAe system moves from points of +he type ?+* ithe case was studied in Sect.3,5) I it 
proceeds under the control &u, to the boundary (1.7) ~ After this it moves along it under 
the control,(5.1) and PO = fP, to emerge at the boundary (1.8) on the line &*, H3 * (the 
velocity constraints are not attained) and I%* is the point of intersection of the boundary 
(1.8) with the finite segment of SL, while H,* is the point of intersection of the boundary 
(1.6) with the trajectory of motion of the system along the boundary (1.8), passing through 
the point Hf. Moving along a,%* to the point Hz* under the control (5.1) with Pa = --P, 
(the control attains the value&u, at the point Hz*), the system emerges at the point ffr' 
at the end segment of SL and proceeds along it to the origin of coordinates. 

The optimal motion from the initial points of type 3’ differs from the optimal motion from 
type 2* points in that after reaching the boundary (1.7) and moving along it for some time 
(here the control is constructed accarding to the rules of Sect.S), the system reaches the 

phase boundary 

41. Here this 
fl.6) (the optimal control on it is constructed according to the rules of Sect. 
boundary cannot be reached outside the segment A*BTt$*B-)* The system moves 

along the phase boundary towards the point Efs=_ When the point I&= is reached, a switchover 
takes place to the control ensuring that the system moves along the trajectory H[,*B,* (the 
optimal control is constructed here according to the rules of Sect.5). The subsequent motion 
of the system is identical with that discussed above. 

The point 4' is a limit point of the set of type 3*points. The motion of all points to 
the right &>@land left &<o of it leads to violation of the power constraint (1.7). The 
motion from this point follows the rules given for the optimal motions from the initial type 

3' points. 

Fig.6 
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The problem was proposed by V.G. Razumov and V-V. Slatin. 
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